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ABSTRACT
Some E. coli cause diarrhea by elaborating heat-labile and heat-

stable (ST) enterotoxins which stimulate intestinal secretion. E. coli
ST's are small peptides which bind to intestinal luminal epithelial cell
receptors. The ST receptor, one of a family of receptor-cyclases called
guanylyl cyclase C (GC-C), is a membrane spanning protein containing
an extracellular binding domain and intracellular protein kinase and
catalytic domains. The intestine synthesizes and secretes homologous
peptides, guanylin and uroguanylin. The kidney also synthesizes
uroguanylin. ST, guanylin or uroguanylin binding to GC-C results in
increased cGMP, phosphorylation of the CFTR Cl- channel and secre-
tion. Proguanylin and prouroguanylin circulate in blood and bind to
receptors in intestine, kidney, liver, brain etc. In the kidney, they
stimulate the excretion of Na+ and K+. Study of GC-C "knock-out"
mice reveal that GC-C is important to intestinal salt and water secre-
tion, duodenal bicarbonate secretion, recovery from CCl4-induced liver
injury, and to intestinal polyp formation in Min mice lacking GC-C.

INTRODUCTION
E. coli cause diarrhea and man and animals by a variety of mecha-

nisms (1). These include the elaboration of enterotoxins, invasion ofthe
intestinal mucosa and causing an intense inflammatory reaction, al-
teration of the cytoskeleton of the epithelial cells, by the elaboration of
cytotoxins which damage cells and interfere with protein synthesis,
and by other poorly understood mechanisms. The enterotoxin-elabo-
rating E. coli, called enterotoxigenic E. coli or ETEC are the common-
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est E. coli pathogenic for man. These strains may elaborate one or
more enterotoxins which include a heat-labile enterotoxin (LT), a heat-
stable enterotoxin (ST) and a Shiga-like toxin (STEC). These toxins
have different mechanisms of action. LT's activate adenylyl cyclase to
stimulate cAMP production which activates a cAMP-dependent kinase
(PKA). PKA phosphorylates a Cl- channel (CFTR) and results in
stimulation of Cl- secretion and the inhibition ofNa+ absorption. ST's
stimulate guanylyl cyclase, specifically the guanylyl cyclase C isoform
(GC-C) to increase cGMP which induces intestinal secretion (see be-
low). The mechanisms whereby STEC stimulate secretion are poorly
understood but these toxins have cytotoxic properties and damage
epithelial cells and endothelial cells by virtue of inhibiting protein
synthesis (1).
Of the various enterotoxin-elaborating E. coli, the most common are

E. coli which elaborate a heat-stable enterotoxins generally referred to
as ST. These are responsible for both sporadic diarrhea and are a
common cause of traveler's diarrhea (1-2). E. coli heat-stable entero-
toxins, their mechanism of action, their receptor, GC-C, and their
effects on the gastrointestinal tract and other organs are reviewed in
this chapter (1-5). While initially it was shown that guanylyl cyclase C
was a major regulator of Cl- secretion in the gastrointestinal tract
(6,7), we have come to learn that the receptor-ligand system may have
diverse, important biologic functions not only in the gastrointestinal
tract but also in the kidney and in other organs. Investigation of this
receptor-ligand system, has shown that this system may also be in-
volved in duodenal bicarbonate secretion, cell proliferation and repair
from cell injury. These hypotheses are also briefly discussed.

E. COLI HEAT-STABLE ENTEROTOXINS AND OTHER
RELATED TOXINS

The E. coli heat-stable enterotoxins have been purified and their
sequence determined (3). E. coli elaborate either an 18 or 19 amino acid
peptide (Figure 1) which are identical in their carboxy-terminal 13
amino acids (3,4,8). These toxins are unusual in that 6 of the amino
acids are cysteines and all are involved in forming 3 disulfide bridges.
This results in a highly internally bonded molecule and this tertiary
structure may account for its relative resistance to intestinal pro-
teases. Intact disulfide bridges are required for biologic activity. The
amino-terminal 4 or 5 amino acids, of the 18 and 19 amino acid species,
respectively are not required for biologic activity (9). Another class of
pathogenic E. coli, the enteroaggregative E. coli elaborate a related
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E. coli STa NSSNYC CELCCNPACTGCY
NTFYCCELCCNPACAGCY

Guanylin PGTCEICAYAACTGC
Uroguanylin NDDCELCVNVACTGCL

FV. 1. Comparison of pIimary structures ofE. coli heat-stable enterotoxins and their
mainmmalian homologs, guanylin and uroguanylin. The darkened areas are locations of
amino acid identity to all.

toxin referred to as EAST (5). This toxin retains a high degree of
homology in the carboxy-terminal portion to the above described ente-
rotoxigenic E. coli.

Since the identification of the E. coli ST's, various enteric bacteria
have been shown to elaborate identical (to the 18 or 19 amino acid
E. coli ST's described above) or highly homologous to E. coli ST's. Some
of these bacteria include Yersinia enterocolitica, Citrobacter freundii,
Klebsiella pneumoniae, and NAG-Vibrios. The ST's secreted by these
bacteria vary in total length but retain a high degree ofhomology to the
carboxy-terminal, biologically-active portion, of ST (3). All the ST's
activate guanylyl cyclase C (GC-C), a membrane-bound form of
guanylyl cyclase.

RECEPTOR FOR ST'S
While it has been appreciated for some time that ST stimulates

guanylyl cyclase (GC) (6), how it does so has only recently been eluci-
dated. Our laboratory demonstrated that receptors for ST exist on the
luminal or brush border surface of small intestinal and colonic epithe-
lial cells and that binding to these receptors activated guanylyl cyclase
(10). The relationship between the binding to the receptor and activa-
tion of guanylate cyclase was not known until Garbers et al. (11) cloned
a guanylyl cyclase and showed that it was a receptor-cyclase which
spanned the cell membrane once, had an extracellular domain, a small
transmembrane domain and cytoplasmic catalytic and kinase-like do-
mains (Figure 2). The first such cloned guanylyl cyclase was shown to
be the receptor of atrial natrurietc peptide (ANP) and was called GC-A.
Subsequently, many members of this family have been cloned but only
3 members have known ligands, i.e., GC-A, GC-B, and GC-C (12,13). As
mentioned, GC-A is the receptor for ANP, GC-B the receptor for CNP
and BNP, while GC-C was shown to be the receptor for E. coli heat-
stable enterotoxin (ST) (11). The intracellular domains of these 3
receptor cyclases are highly homologous while the extracellular bind-
ing domains are divergent (12). GC-C is a glycoprotein (11,15-17) but
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Guanylate Cyclase-Receptor Structure

Extracellular
Domain

Protein Kinase
Domain

Catalytic
Domain

FIG. 2. Postulated structure of membrane-associated receptor-guanylyl cyclases. Pro-
tein spans the cell membrane once and has an extracellular domain, a short transmem-
brane domain, and an intracellular domain comprised of a catalytic and protein kinase-
like domains.

the sugar residues are not required for ST binding (16). The binding
site has been localized to the extracellular domain and the specific
amino acids required for binding have been defined (18,19). In order to
be active, the ST/guanylin/uroguanylin receptor must exist as a ho-
modimer (20). Two or more wild type monomers are required for
guanylyl cyclase activity and signal transduction (21). Activation of
GC-C is regulated by a novel protein called IKEPP, intestinal and
kidney-enriched PDZ protein. This protein inhibits ST activation of
GC-C (22). We have cloned the cDNA for the human ST receptor from
CaCo2 cells and shown that the encoded protein is identical to that
encoded by the cDNA cloned from human intestine save for a single
amino acid (14,15).

Initially, it was that that GC-C was only expressed in the small and
large intestine (10,11,23). Subsequently, by RT-PCR and other tech-
niques we now know that GC-C is expressed in many organs including
the stomach, kidney, pancreas, salivary glands, liver, pituitary, adre-
nal gland, lung, etc. (12,13,24-30). With the exception of the kidney,

70



E. COLI ST/GUANYLIN/UROGUANYLIN SYSTEM

which is further discussed below, the function of GC-C in these organs
is unknown.

In the intestine GC-C is found only in the villous and crypt epithelial
cells and not in other layers of the small or large intestine (31-33). The
subcellular location of GC-C in the small intestine is the brush border,
or luminal membrane. GC-C was not detected on basolateral mem-
branes of small intestinal villous cells. Subsequently, we have shown
that in the rat, an ST binding species resides on the basolateral
membrane of the colonocyte but that binding to this membrane does
not result in the production of cGMP (34). Thus, it is likely that this
"receptor" is not GC-C.
We have demonstrated that GC-C expression in both rat and human

intestine is developmentally regulated. GC-C receptor number is very
high at birth and in the neonatal period but then falls to a lower
number which remains stable through life (35,36). In the human, this
transition occurs at approximately 1-2 months of age. Laney et al also
showed that GC-C was highly expressed, by northern analysis, in
newborn liver but was undetectable in adult liver (24). With damage to
the liver, however, either by partial hepatic resection or with CCl4-
induced injury, GC-C was upregulated and easily detected (37). This
has subsequently been confirmed by Scheving et al. (38).

STIMULUS-SECRETION COUPLING
The mechanisms by which cGMP synthesized in response to ST/

guanylin/uroguanylin induces secretion has been clearly defined. Stud-
ies in intact intestine, by deJonge et al. (7,39,40) demonstrate that
cGMP activation of a specific isoform of cGMP-dependent protein ki-
nase II (cGK II or PKG) is sufficient and necessary to activate Cl-
secretion. Pfeifer et al have demonstrated that the intestine of the cGK
II knock out mouse is not responsive to ST, guanylin, or cGMP (41).
These studies clearly demonstrate that in vivo the primary activation
of cGK II mediates ST/guanylinluroguanylin-induced secretion. How-
ever, in the intestinal cell line, T84, very high levels of intracellular
cGMP cross activate protein kinase A (PKA) which alters Cl- channels
to induce Cl- secretion (42,43). The pathway through which ST/gua-
nylin evoke Cl- secretion is also clear. Chao et al. (42) demonstrated
that STa' guanylin, or cGMP could induce Cl- secretion only in cells
expressing CFTR and Cuthbert et al. (44) reported that while guanylin
induces Cl- secretion in normal mouse colon, it is inactive in the colon
of transgenic cystic fibrosis mice which lack a functional CFTR. Fur-
ther, humans with cystic fibrosis do not respond to ST (45). Thus, these
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findings strongly support the view that cGMP activates the CFTR Cl
channel (46). These pathways are shown schematically in Figure 3.

It is also likely that ST/guanylinluroguanylin receptors may be cou-
pled to signal transduction systems other than guanylyl cyclase. This
hypothesis is supported by the observations that ST stimulates PIP2
hydrolysis and stimulates phosphorylation of several BBM proteins
that can be inhibited by protein kinase C (PKC) inhibitors (47,48), that
ST stimulates duodenal mucosal HCO:3 secretion via a Ca++-acti-
vated mechanism (49), and that uroguanylin stimulates a cGMP-inde-
pendent, G protein pathway in kidney (30). Thus, it is likely that the
cellular actions of the various GC-C ligands might involve an interre-
lationship among Ca +, PI cycling, PKC, cGMP, and G proteins
(30,50,51). This is an area that requires further investigation.

ENDOGENOUS ST-LIKE PEPTIDES
The role of ST receptors or GC-C in the intestine was not known

until Currie et al identified a peptide synthesized in the rat small
intestine that bound to GC-C and stimulated guanylyl cyclase to pro-
duce cGMP. When purified and sequenced, this small peptide proved to
be highly homologous to E. coli ST. Because of its ability to activate
guanylyl cyclase activity, it was named guanylin (52-54). Subse-

STa
G3umyn~

v ~ ~ ww~

._______...._...._.. _..___ _ Intestn nal C ell

FIG. 3. Proposed mechanism of GC-C action. ST, guanylin, or uroguanylin bind to
GC-C in the plasma membrane. Binding activates the catalytic domain of GC-C to effect
the conversion of GTP to cGMP. cGMP then activates a specific cGMP-dependent kinase
isoform (cKG11) which phosphorylates the chloride channel, CFTR. Activation of CFTR
channels results in Cl- and HCO3-secretion and also causes the decreased absorption of
Na+ by unclear mechanisms.
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quently, a second homologous peptide was found in urine and was
called uroguanylin (55-57). The relative potencies of these three pep-
tides with regard to activating guanylyl cyclase or stimulating secre-
tion are ST>uroguanylin>guanylin. The comparative structures of
E. coli ST, guanylin, and uroguanylin are shown in Figure 1. Subse-
quently, it was also shown that uroguanylin was also synthesized in
the intestine but with a different proximal-distal gradient than gua-
nylin. Uroguanylin is synthesized primarily in the duodenum and
proximal small intestine while guanylin is synthesized in the distal
ileum and proximal colon (58). Uroguanylin is also synthesized in the
kidney (59,60). Both guanylin and uroguanylin are excreted in urine
(59,60). When synthesized in the intestine, both guanylin and urogua-
nylin are secreted into both the lumen and blood stream. Secretion by
the intestinal epithelium is regulated and the majority secreted lumi-
nally with a minority being secreted into blood (61). Both peptides are
synthesized as pro-compounds, i.e. proguanylin and prouroguanylin
and both circulate in blood. Increased circulating levels and urinary
levels of these "hormones" are found in renal failure, congestive heart
failure, and with carcinoid tumors (67,68). Guanylin is also expressed
pancreas, salivary glands, trachea, and adrenal gland (25-28,54,62)
while uroguanylin is also expressed in kidney, pancreas, and salivary
glands (25-28,58).
The role of these peptides in intestinal function has not been directly

demonstrated but it is highly likely that the GC-C/uroguanylin/gua-
nylin system is a major regulator of electrolyte secretion and, as
discussed below, of duodenal HCO3 secretion. The role of these pep-
tides in renal function has received more study. When guanylin, ST, or
uroguanylin are infused intravenously or into the isolated perfused
kidney a diuresis, natriuresis, and kaliuresis are induced (63-65).
Interestingly, in mice lacking GC-C, intravenously administered
uroguanylin continues to induce a diuresis and natriuresis suggesting
the existence of an additional, non-GC-C receptor in the kidney (64).
Direct evidence for a second, non-GC-C, non-cGMP-dependent receptor
in human renal proximal tubular cells has recently been reported by
Sindice et al. (30). Furthermore, mRNA for uroguanylin and guanylin
are responsive to Na in the diet of the rat and mouse (66,68). A low
salt diet caused both the upregulation of guanylin and uroguanylin in
the intestine while a high Na+ diet had the opposite effect. Similarly,
a high salt diet causes the upregulation of uroguanylin mRNA in
mouse kidney (66).
While the functions of guanylin and uroguanylin are not fully un-

derstood, since both peptides are synthesized by the intestine and are
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released into the blood, as well as into the intestinal lumen, it is likely
that the intestine can directly regulate the Na+ and Cl- absorptive
behavior of the kidney (59). It seems likely that uroguanylin may serve
as an intestinal natriuretic hormone linking the intestine and kidney
in an endocrine axis.

GUANYLYL CYCLASE KNOCK-OUT MOUSE
Two laboratories have produced a mouse with inactivation of the

GC-C gene by homologous recombination (70,71). These animals are
referred to as GC-C knockout mice (KO). These animals do not express
GC-C mRNA or protein and ST does not alter intestinal transport of
Na+ or Cl- (70-72). These animals seem normal, live a normal life
span, and are fertile. They have neither constipation nor diarrhea and
have a normal appearing gastrointestinal tract and other organs.
While, as discussed above, GC-C does modulate Na+ and Cl- transport
in the intestine, it is obvious that this system is not essential and can
be compensated for by other regulatory systems. KO mice are normally
responsive to other intestinal secretory stimuli.
Additional characterization of the GC-C KO animals by Northern

blot analysis of intestine revealed no up-regulation of guanylin or
uroguanylin mRNA and Western blot analysis revealed no diminution
of cGK II levels (70). Since cGMP regulates CFTR both via protein
kinases (7,39,42,43,46,73) and by direct binding ofcGMP to CFTR (74),
it was possible that ablation of GC-C would alter the levels of and
regulation of CFTR. Northern analysis with cDNA probes, and immu-
nohistochemical studies with anti-CFTR antisera (kindly provided by
Dr. Jon Cohen, Duke University) revealed markedly increased levels of
CFTR mRNA and protein in the small intestine but not the colon
(unpublished data). Interestingly, increased levels of Na+ channel
mRNA were seen in the colon.

Utilizing the GC-C KO mouse, we have demonstrated that there is
greatly diminished, but not absent, 125I-ST intestinal binding activity
(70). There is statistically significant residual binding activity in both
small intestine and colon. The residual binding activity has different
properties than ST binding in wild type mice, i.e., a lower Ka ofbinding
and a different pH profile of binding (75).

In collaboration with Charney et al. (72), we have characterized the
transport behavior of the colon of KO mice mounted in Ussing cham-
bers. We observed that net Cl- absorption was lower in the colon ofKO
mice that controls and also the possibility that basal colonic HC03-
secretion was reduced in KO mice. This is an interesting possibility in
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view of the abnormalities of duodenal HCO3- transport discussed
below (49,76,77). As expected, the colon from KO animals were totally
unresponsive to ST applied to either the mucosal or serosal surfaces
but showed normal responsiveness to 8-Br-cGMP (72).
Continued study of the GC-C knockout mouse should help elucidate

the significance of GC-C expression in extraintestinal sites, the exis-
tence of and role of additional receptors.

OTHER POSSIBLE RECEPTORS
A great deal of evidence suggests the existence of an additional

ST/guanylin/uroguanylin receptor(s). Kinetic analysis of ST binding to
intestinal membranes indicate both high and low affinity receptors
(78). We reported that the IEC-6 rat crypt cell line possesses 125I-ST
binding activity but no ST-stimulated guanylyl cyclase activity, and no
ST receptor (GC-C) mRNA was detected either by Northern or PCR
analysis (14). We have demonstrated that highly purified basolateral
membranes prepared from rat colonocytes bind ST but do not generate
cGMP (34). Further, when ST was added to the mucosal surface of
normal mouse colon mounted in Ussing chambers, there was a stim-
ulation of short circuit current and a stimulation of Cl- secretion.
When added to the serosal surface, it was electrically silent and no
transport effects were observed (72). These observations suggest that
binding to the colonocyte basolateral "receptor" may subserve func-
tions other than regulation of Na+, Cl-, or HCO3- transport. As
mentioned above, we have shown that in the GC-C KO mouse lacking
GC-C that ST binding activity persists in the intestine (70). With
Isenberg et al. (unpublished observations), we have demonstrated that
ST continues to stimulate a short circuit current response (although
less than in wild type animals) in duodenum from GC-C KO animals
mounted in Ussing Chambers. In collaboration with Greenberg et al.
(64), we have demonstrated that intravenous infusion of ST to normal
mice induces a diuresis and natriuresis and that this response persists
in GC-C KO mice. Most recently, Sindice et al. (30) have reported that
uroguanylin stimulates two distinct signaling pathways in human
kidney (proximal tubules) and a human proximal tubule cell line. One
involves GC-C and cGMP while the second is a non-GC-C, cGMP-
independent pathway connected to a pertussis toxin-sensitive G pro-
tein (30). Taken together, these observations strongly support the
existence of an alternative ST/guanylin/uroguanylin receptor. The
function(s) of the alternative receptor is unknown but does not likely
subserve Cl- secretion, at least in the colon. In the duodenum, the
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alternative receptor may be involved in the regulation of bicarbonate
transport (79) although it may have other functions as well.

OTHER POSSIBLE FUNCTIONS OF THE GC-C/GUANYLIN/
UROGUANYLIN SYSTEM

As described above, the phenotype of the GC-C KO mouse was
seemingly normal except for the lack of secretory response to ST. To
further explore the possible role of GC-C, we decided to stress these
animals to determine whether GC-C might be involved in the general
processes of cell proliferation, cell injury, and cell repair. The hypoth-
esis that GC-C might be involved in these cell proliferation or modu-
lation of cell injury was suggested by several observations: a) GC-C
expression is markedly higher in the new born and neonatal intestine
and neonatal liver (both rapidly proliferating organs) than in adult life
(35,36) b) GC-C is upregulated in the liver of animals subjected to
partial hepatectomy, CCl4-induced liver injury, or as an acute phase
response (37,38) c) GC-C continues to be expressed in human adeno-
carcinoma of the colon (80,81) while guanylin is poorly or not expressed
in these tumors (82) and that d) feeding of uroguanylin to Min mice
(the mouse equivalent to adenomatous polyposis coli) reduces the
number of intestinal polyps (90).

Effect of GC-C deficiency on CCL4-induced liver injury and repair
We had previously shown that GC-C was not detectable in the adult

liver by Northern analysis but became markedly upregulated in re-
sponse to partial hepatic resection or to CCl4-induced liver injury (37).
Upregulation of GC-C in response to hepatic resection has been con-
firmed by Scheving and Russell (38). These data suggested the hypoth-
esis that GC-C is involved in recovery from hepatic injury and/or in
hepatocellular proliferation. To test this hypothesis, we compared the
course, severity and duration of CCl4-included liver injury in wild type
and GC-C deficient mice (83). Our studies demonstrated that mortality
to CC14 was significantly increased in GC-C deficient mice compared to
controls (Figure 4). Further, although the degree of cell necrosis was
the same in day one in both wild type and KO animals, the magnitude
of hepatic injury was more severe and more long lasting and slower to
recover in GC-C deficient mice compared to controls (Figure 5). These
data suggest an important role for GC-C in modulating the response to
hepatic injury and perhaps in hepatocyte proliferation, i.e., either
initial cytotoxicity vs. recovery from injury (hepatocyte proliferation).
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Decreased Survival ofGC-C Null Mice
by Day 4 after CC14
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FIG. 4. Comparison of survival in CC14-treated GC-C deficient (GC-C null) and nor-

mal (wt) mice. Statistically significant decreased survival is seen on day 4 in GC-C null
animals.

GC-C Null Mice Have Increased
Incidence of Necrosis on Day 4
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FIG. 5. Comparison of degree of liver cell necrosis in CC14-treated mice. Wt = normal

mice. Null = GC-C deficient mice.

Effect of GC-C deficiency on expression of intestinal tumors in
Min/+ mice
The biologic significance of the GC-C/guanylin/uroguanylin system

assumed added importance when it was shown by Carrithers et al.
(80,81) that GC-C was expressed in primary colonic adenocarcinomas
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and in their metastases. Interestingly, subsequently, Cohen et al.
demonstrated that guanylin was down regulated in colon polyps and
adenocarcinomas (82,85). Park et al. have recently demonstrated that
some esophageal and gastric adenocarcinomas also may express GC-C
(86). The expression of GC-C in colonic adenocarcinomas has led to
attempts to target and visualize these tumors utilizing ST analogues
coupled to 1"'In by scanning (87,88).
Two studies have demonstrated that GC-C agonists inhibit prolifer-

ation in colon cancer cell lines (89,90). The exact mechanism remains
in question as Shailubhai et al. (90) saw induction of apoptosis in the
T84 cell line upon uroguanylin treatment while, in contrast, Pitari et
al. (89) showed that ST addition delayed DNA synthesis and prolonged
the cell cycle in the absence of cell death. Thus, the mechanism(s) by
which ST or uroguanylin may alter cell proliferation is uncertain and
needs to be further examined.

In order to help understand the possible role of GC-C in intestinal
polyp and cancer formation/progression the min/+ mouse model has
been used. This model is the equivalent of human adenomatous poly-
posis coli (APC). Min mice have the same gene defect as do patients
with APC. Long term oral administration of uroguanylin led to a
significant decrease in the number of polyps seen in Min/+ mice (90).
These authors suggested that uroguanylin reduced the number of
polyps via GC-C.
We reasoned that ifGC-C was indeed integral to tumor development/

progression processes, mating min/+ mice with the GC-C deficient
mouse should cause an alteration in intestinal polyps. Paradoxically,
mating of GC-C KO mice with min/+ mice significantly reduces the
number of intestinal adenomas (84) in the resultant GC-C-/-/min+
mice (Figure 6). Thus, GC-C does not seem to be essential in reducing
polyp number and clearly can occur via a non-GC-C mechanism. Per-
haps uroguanylin reduces polyp number via a non-GC-C or alternative
receptor. In an initial attempt to understand how GC-C might be
interacting with polyp formation, we examined the role of B-catenin in
the transcriptional regulation of the human GC-C gene. We have
shown that the GC-C gene is transcriptionally regulated by B-catenin/
TCF (91).

Duodenal bicarbonate secretion
In collaboration with Isenberg et al. (49,76,77,92), we have been

studying duodenal HCO3- transport in KO and normal mice. Duode-
nal mucosa is mounted in Ussing chambers and studied under short
circuit conditions. Guanylin has been shown to be a potent stimulant of
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Tumor Number is Reduced
in Minl+, GC-C-/- Mice
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FIG. 6. Comparison in intestinal polyp number in minl+ mice compared to min/+

mice lacking GC-C (min/+, GC-C-/-). There is a statistically significant reduction in
number of adenomatous polyps in mice lacking GC-C.

duodenal HCO3- secretion (93) and we wondered whether this might
be altered in the GC-C KO mouse. Our findings demonstrate that
duodenal HCO3- secretion is markedly reduced in KO mice (76,92)
(Figure 7) and that HCO3- secretion in response to carbachol and

Duodenal STa-induced HCO3 Secretion is
Decreaed In GC-C Null Mice
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FIG. 7. Comparison of ST-stimulated HC03- secretion in duodenal mucosa of normal

and GC-C deficient mice. The upper curve represents normal mice while the lower curve
represents GC-C deficient mice.
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PGE2 are also diminished (49,76). Interestingly, ST administration to
the duodenal mucosa ofKO mice continues to stimulate, although less
than in wild type mice, a short circuit current response (unpublished
data). We have also shown that duodenal HC03- secretion in response
to duodenal acidification in vivo, the normal physiological stimulus to
HCO3 secretion, is also blunted (77). The biochemical mechanisms by
which lack of GC-C alters duodenal HCO3 secretion are unknown. We
have preliminary evidence that some of these effects may be a conse-
quence of reduced MAPK activation (77).
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DISCUSSION
DuPont, Houston: Ralph, very nice, and thank you for that presentation. Enteroto-

toxigenic E. coli is the principle cause of diarrhea in travelers and military populations,
and prevention of this disease is really important. There are three virulence properties,
the cholera-like heat labile toxin, the heat stable toxin and colonization fimbriae.
Vaccines are being developed against the LT and against the fimbriae. But ST being
non-antigenic we don't have a good handle on that. Can you think of novel ways to treat
or prevent ST producing disease employing GCC? It appears that ST is the most
important ETEC toxin clinically.

Giannella, Cincinnati: There are several possible approaches. While ST being a
small molecule by itself is not particularly immunogenic, if you conjugate it to a larger
carrier molecule you can make it immunogenic. And you can make antibodies. I'm not
sure if that strategy is useful in creating human vaccine or not, but it certainly works in
animals and you can protect pigs for example which we've done with Dr. Harley Moon by
that particular approach. I think understanding the pathway as to how ST works and
what it activates will expose various potential targets for therapeutic intervention. The
problem is one of specificity. The system is not just in the gut, the system is not just
activated in diarrheal disease, and as I have tried to show you it may be involved in quite
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a number of important processes. So I am not so sure that the strategy of interrupting a
protein kinase for example, a protein kinase G inhibitor, would be a particularly useful tool,
unless you could target it very specifically to where you wanted it.

LaMont, Boston: Ralph, my question relates to those other important processes you
just mentioned. Normally the gut doesn't secrete anything, it absorbs. Yet we have a
system with a ligand and a receptor, guanylin and GCC, that seems to regulate secre-
tion. What's the physiological role of guanylin? Are there any states or animal models
where you can up regulate the concentration or the release of the ligand?

Giannella: That's a good question for which I don't have a good answer. The physi-
ologic role of guanylin in the gut is not particularly clear. I mean it's loosely said that it's
probably important to keep the contents liquid, and to facilitate digestion and like
phenomena. I don't find that particularly satisfying answer, but I can't do any better
than that at the moment.
Frohman, Chicago: Ralph, that was a lovely presentation. Along the lines of an

earlier question, what about the possibility of developing an antagonist to GCC, such as
a non-absorbable antagonist that might be used to block its effects? Granted it's not a
prophylactic treatment, but one that might effectively inhibit this entire signal trans-
duction mechanism.

Giannella: I think, Larry, that is a theoretical possibility particularly for a non-
absorbable compound, would be confined to the gut and could be specific to GCC. I think
that is quite a reasonable strategy to pursue. I am unaware of it being pursued, but it's
a good idea.


